Tableau avec les données techniques pour EWYD-BZSS

EWYD250BZSS EWYD270BZSS EWYD290BZSS EWYD320BZSS EWYD340BZSS EWYD370BZSS EWYD380BZSS EWYD410BZSS EWYD440BZSS EWYD460BZSS EWYD510BZSSB3 EWYD530BZSSB3 EWYD570BZSSB3 EWYD510BZSS (Archived) EWYD520BZSS (Archived) EWYD580BZSS (Archived)
Sound pressure level Cooling Nom. dBA 82 (4) 82 (4) 82 (4) 82 (4) 82 (4) 82 (4) 82 (4) 83 (4) 83 (4) 84 (4) 83.7 83.7 83.7 84 (4) 84 (4) 84 (4)
Refrigerant charge Per circuit kg                           47.0 47.0 49.0
  Refrigerant charge-=-Per circuit-=-TCO2Eq TCO2Eq                           67.2 67.2 70.1
Compressor Type   Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor
  Starting method   VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven Inverter driven Inverter driven Inverter driven
  Quantity   2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
Weight Operation weight kg 3,550 3,595 3,640 4,010 4,010 4,068 4,138 4,518 4,518 5,255 5,724 5,964 5,953 5,724 5,964 5,953
  Unit kg 3,410 3,455 3,500 3,870 3,870 3,940 4,010 4,390 4,390 5,015 5,495 5,735 5,735 5,495 5,735 5,735
Air heat exchanger Type   High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler
EER 2.77 (1) 2.70 (1) 2.65 (1) 2.75 (1) 2.69 (1) 2.68 (1) 2.63 (1) 2.66 (1) 2.62 (1) 2.79 (1) 2.81 2.81 2.62 2.76 (1) 2.74 (1) 2.67 (1)
ESEER                           4.01 4.01 3.93
Refrigerant GWP                             1,430 1,430 1,430
  Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  Circuits Quantity                             3 3 3
  Charge kg                     141 141 147
Cooling capacity Nom. kW 253 (1) 272 (1) 291 (1) 323 (1) 337 (1) 363 (1) 380 (1) 411 (1) 433 (1) 455 (1) 515 533 569 502 (1) 519 (1) 580 (1)
Water heat exchanger Water volume l                           229 229 218
  Type                             Single pass shell & tube Single pass shell & tube Single pass shell & tube
Power input Cooling Nom. kW                           182 (1) 189 (1) 218 (1)
  Heating Nom. kW                           178 (2) 186 (2) 208 (2)
Sound power level Cooling Nom. dBA 101 101 101 101 101 101 101 102 102 104 104 104 104 104 104 104
COP                           2.99 (2) 3.01 (2) 2.97 (2)
Dimensions Unit Width mm 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254
    Depth mm 3,547 3,547 3,547 4,428 4,428 4,428 4,428 5,329 5,329 6,659 6,659 6,659 6,659 6,659 6,659 6,659
    Height mm 2,335 2,335 2,335 2,335 2,335 2,335 2,335 2,335 2,335 2,280 2,280 2,280 2,280 2,280 2,280 2,280
Capacity control Minimum capacity % 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 9.0 9 9 9 9.0 9.0 9.0
  Method   Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Variable Variable Variable Stepless Stepless Stepless
Fan Air flow rate Nom. l/s                           62,640 61,652 62,231
  Speed rpm                           900 900 900
Heating capacity Nom. kW                           533 (2) 561 (2) 618 (2)
Compressor Starting method                             VFD driven VFD driven VFD driven
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage range Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10
    Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
Unit Max unit current for wires sizing A 238 238 238 287 328 328 328 367 370 370 451 492 492
  Starting current Max A 0 0 0 0 0 0 0 0 0 0 0 0 0
  Running current Cooling Nom. A 150 163 178 192 205 220 232 249 265 267 298 310 349
    Max A 216 216 216 261 298 298 298 334 362 336 410 447 447
Notes (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation.       (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation.
  (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation.       (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation.
  (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825.       (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825.
  (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744       (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744
  (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.       (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.       (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
  (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.       (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current       (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage.       (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1       (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water       (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water
  (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).       (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.       (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.
Power input Cooling Nom. kW 91.3 (1) 101 (1) 110 (1) 117 (1) 125 (1) 135 (1) 144 (1) 154 (1) 165 (1) 163 (1) 183 189 217
IPLV 4.58 4.62 4.62 4.75 4.64 4.71 4.67 4.73 4.69 4.85 4.89 4.85 4.77
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Fan Quantity   6 6 6 8 8 8 8 10 10 12 12 12 12
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
Fan motor Drive   DOL DOL DOL DOL DOL DOL DOL DOL DOL DOL Direct on line Direct on line Direct on line
Operation range Air side Cooling Min. °CDB -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
      Max. °CDB 45 45 45 45 45 45 45 45 45 45
  Water side Evaporator Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
      Max. °CDB 15 15 15 15 15 15 15 15 15 15
Refrigerant GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430.0 1,430.0 1,430.0
  Circuits Quantity   2 2 2 2 2 2 2 2 2 3 3 3 3
Piping connections Evaporator water inlet/outlet (OD)   139.7mm 139.7mm 139.7mm 139.7mm 139.7mm 139.7mm 139.7mm 139.7mm 139.7mm 219.1mm 219.1mm 219.1mm 219.1mm
SEER                     4.57 4.57 4.55